SYNTHESIS OF 2,6-DIARYL-SUBSTITUTED

PYRYLIUM AND 4-ALKOXYCHROMYLIUM

SALTS WITH VARIOUS ANIONS

G. N. Dorofeenko and N. A. Lopatina

UDC 547.814.07

A method is proposed for the synthesis of 2,6-diphenyl-substituted pyrylium salts and 7-hydroxy-4-ethoxychromylium salts with various anions on the basis of the condensation of ethyl orthoformate with aliphatic—aromatic ketones in the presence of acid catalysts (hydrogen chloride, hydrogen bromide, hydrogen iodide, and 92% sulfuric acid) and Lewis acids (aluminum chloride, ferric chloride, and stannic chloride).

The previously described methods for the synthesis of 2,6-diphenylpyrylium salts which have an active γ -position were based on the condensation of phenylpropargyl aldehyde or β -chlorovinyl phenyl ketone [2] with acetophenone. Later a method was found for preparing 2,6-diaryl-substituted pyrylium salts by condensation of ethyl orthformate with aliphatic-aromatic and heterocyclic ketones in the presence of perchloric acid or boron trifluoride etherate [3].

In this paper we propose a method for obtaining 2,6-diphenyl-substituted pyrylium salts and 4-ethoxy-chromylium salts on the basis of the condensation of ethyl orthoformate with aliphatic—aromatic ketones (acetophenone and 2,4-dihydroxyacetophenone) in the presence of various acid catalysts (hydrogen chloride, hydrogen bromide, hydrogen iodide, and concentrated sulfuric acid) and strong and weak Lewis acids (aluminum chloride, ferric chloride, and stannic chloride).

As was previously shown in [3], the intermediates in this reaction are the perchlorates of dialkoxy-carbonium ions which have C-alkylating ability and are obtained by the reaction of ethyl orthoformate with anhydrous perchloric acid.

We have observed that not only the perchiorates of the dialkoxycarbonium ions, but also their chlorides, bromides, iodides, sulfates, etc. can be C-alkylating agents in this reaction (Table 1); this opens possibilities for the development of a very simple and convenient method for the synthesis of 2,6-diaryl-substituted pyrylium salts with the indicated anions according to the scheme

Of significant interest is the fact that the dialkoxycarbonium chlorides, bromides, and iodides have high C-alkylating ability; alkylation of aliphatic-aromatic ketones with these salts is readily accomplished under comparatively mild conditions in the absence of any Friedel-Crafts reaction catalysts. The reaction is carried out with heating (60-75 deg) for 1 h of a mixture of components with subsequent bubbling of gaseous hydrogen halide through the mixture for 3 to 6 h. The yields of the salts decreased considerably on shortening the time of passage of the hydrogen halides.

Rostov-on-Don State University. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 160-163, February, 1971. Original article submitted November 5, 1969.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Characteristics of the Synthesized Compounds

Com -			Annagranag	Empirical formula	Found, %			Calculated, %			Yield,
pound	X	mp, °C	Appearance	Empirical formula	С	н	x	С	Н	x	%
				C_6H_5 $X \ominus$ C_6H_5			`				
I	CI	113	Light-rose plates	C ₁₇ H ₁₃ ClO	75,4	4,7	12,5	76,0	4,8	13,2	63
II	Br	182	Light-brown plates	C ₁₇ H ₁₃ BrO	64,9	3,9	25,0	65,2	4,2	25,5	20
Ш	I	152	Dark-violet plates	C ₁₇ H ₁₃ IO	56,4	3,2	35,0	56,7	3,6	35,2	80
IV	HSO ₄	169	Yellow-brown plates	C ₁₇ H ₁₄ O ₅ S	61,8 4,0		S, 8,9	61,8	4,3	\$ 9,1	92
v	AlCl ₄	300	Orange plates	C ₁₇ H ₁₃ AlCl ₄ O			Al 8,1			Al 8,7	97
VI	FeCl ₄	182183	Red-violet plates	C ₁₇ H ₁₈ Cl ₄ FeO			Fe 12,1			Fe 13,0	93
VII	¹/2 SnCl ₆	268	Yellow needles	$C_{34}H_{26}Cl_6O_2Sn$			Sn 12,1			Sn 14,9	68
				OC₂H ₅ OC₂H ₅							
VIII	Cl	211	Light-brown needles	$C_{11}H_{11}ClO_3 \cdot H_2O$	53,7	4,9	13,8	54,0	5,3	14,5	70
ΙX	Br	285 .	Dark-brown needles	$C_{11}H_{11}BrO_3$	48,3	3,7	29,0	48,7	4,0	29,5	70
Х	I	189—190	Dark-violet needles	C ₁₁ H ₁₁ IO ₃	43,6	3,1	37,6	43,7	3,3	38,4	95
XI.	FeCl₄	300	Red-brown plates	$C_{11}H_{11}Cl_4FeO_3$			Fe 14,0			Fe 14,3	60

TABLE 2. Major Absorption Bands in the IR Spectra of 2,6-Diphenylpyrylium and 7-Hydroxy-4-ethoxychromylium Salts

Com-	Major vibr	Major vibration bands of the pyrylium ring, cm-1				Vibrations of Vibrations of the		
pound	8a	8Ъ	19a	19 b	ring, cm-1	alkoxy group,		
	1616	1540	1462	1443	1592			
11	1618	1567	1484	1410	1596			
ΙΪΪ	1616	1538	1460	1412	1588			
IV	1620	1515	1497	1410	1595			
V	1618	1536	1446	1410	1600			
VI	1618	1540	1460	1410	1580	-		
VII	1618	1546	1460	1410	1596			
VIII	1625	1568	1461		1606	1240		
IX	1631	1578	1463		1592	1260		
X	1626	1572	1464	<u> </u>	1611	1240		
XI	1626	1580	1463	-	1602	1259		

The structures of the pyrylium salts were proved by converting them, by the action of ammonium hydroxide, to 2,6-diphenylpyridine and, by reaction with 70% perchloric acid, to the previously described 2,6-diphenylpyrylium perchlorate [1-3].

Under similar conditions 7-hydroxy-4-ethoxychromylium salts are formed in high yields by the condensation of 2,4-dihydroxyacetophenone with ethyl orthoformate.

HO
$$\begin{array}{c|c}
COCH_3 & CH(OC_2H_5)_3 \\
OH & HX \\
X = CI, Br, T, FeCI,
\end{array}$$

The structures of the compounds obtained were proved by converting them to the previously described perchlorate [4] and to the corresponding 7-hydroxychromone by the action of water.

The IR spectra of the synthesized salts (Table 2) contain intense absorption bands which correspond to the valence vibrations of the pyrylium and benzene rings.

EXPERIMENTAL

- 2,6-Diphenylpyrylium Sulfate. Concentrated (92%) sulfuric acid [4 ml (0.08 mole)] was added to a solution of 2.4 ml (0.02 mole) of acetophenone in 20 ml of freshly distilled ethyl orthoformate. The solution was allowed to stand for 12 h and then diluted with ether. The resulting yellow-brown crystals, which fluoresced strongly, both in solution and in the solid state, were filtered to give 3.1 g (92%) of a product with mp 169 deg (from glacial acetic acid).
- 2,6-Diphenylpyrylium Chloride. A mixture of 2.4 g (0.02 mole) of acetophenone and 20 ml of freshly distilled ethyl orthoformate was heated for 1 h on a water bath at 60 deg with passage of a stream of hydrogen chloride through the mixture. The solution was then saturated for another 2 h with hydrogen chloride and allowed to stand for 12 h. Pale-rose plates formed on extreme dilution with ether and were filtered and dried.
- 2,6-Diphenylpyrylium perchlorate formed in quantitative yield by treatment of the solution of the chloride in glacial acetic acid with 70% perchloric acid. The orange crystals had mp 220 deg [3]. This sample did not depress the melting point of an authentic sample of 2,6-diphenylpyrylium perchlorate. 2,6-Diphenylpyridine was obtained in 86% yield by treatment of the chloride with ammonium hydroxide and had mp 81 deg [5].
- 7-Hydroxy-4-ethoxychromylium Bromide. A solution of 1.52 g (0.01 mole) of 2,4-dihydroxyacetophenone in 30 ml of freshly distilled ethyl orthoformate was heated for 1 h at 70 deg on a water bath while passing a stream of hydrogen bromide through the mixture. The solution was then saturated for another 6 h with hydrogen bromide and allowed to stand for 12 h. Extreme dilution of the mixture with ether yielded brown crystals which were filtered, washed with ether, and dried to give 1.9 g (70%) of a product with mp 285 deg (from alcohol).

A quantitative yield of 7-hydroxychromone with mp 218 deg [4] was formed by heating the bromide with water.

LITERATURE CITED

- 1. H. Stetter and A. Reichel, Chem. Ber., 93, 1253 (1960).
- 2. G. Fischer and W. Schroth, Z. Chem., 3, 266 (1963).
- 3. G. N. Dorofeenko and V. V. Mezheritskii, Zh. Organ. Khim., 3, 1533 (1967).
- 4. G. N. Dorofeenko and V. V. Mezheritskii, Zh. Organ. Khim., 4, 1305 (1968).
- 5. A. Pacol and K. Strasser, Ber., 20, 2764 (1887).